
High-performance
computation of pseudospectra

Jack Poulson

Department of Computational Science and Engineering
Georgia Institute of Technology

Math+X Seminar
Stanford University
January 15, 2014

1 / 34



Analyzing the norm of the resolvent
Eigenvalues only provide singularities of resolvent, (A− ζI)−1

Not always enlightening about the behavior of the resolvent norm...

x

Recreation of first published plot of pseudospectra [Demmel-1987]
2 / 34



Analyzing the norm of the resolvent

Many authors [Varah-1967,Landau-1975,Godunov et
al.-1982,Trefethen-1990,Hinrichsen/Pritchard-1992] proposed
variants of the ε-pseudospectrum:

Λε(A) = {ζ ∈ C : ‖(A− ζI)−1‖2 > ε−1}
= {ζ ∈ C : σmin(A− ζI) < ε}
= {ζ ∈ C : ζ ∈ Λ(A + E), ‖E‖2 < ε}

I Trivial for normal (AAH = AHA) matrices:
σmin(A− ζI) = dist(ζ,Λ(A))

I Please see “Computation of pseudospectra” [Trefethen-1999] or
“Spectra and pseudospectra” [Trefethen/Embree-2005] for an
in-depth introduction (this talk’s title is an homage to the former)

3 / 34



Analyzing the norm of the resolvent

Many authors [Varah-1967,Landau-1975,Godunov et
al.-1982,Trefethen-1990,Hinrichsen/Pritchard-1992] proposed
variants of the ε-pseudospectrum:

Λε(A) = {ζ ∈ C : ‖(A− ζI)−1‖2 > ε−1}
= {ζ ∈ C : σmin(A− ζI) < ε}
= {ζ ∈ C : ζ ∈ Λ(A + E), ‖E‖2 < ε}

I Trivial for normal (AAH = AHA) matrices:
σmin(A− ζI) = dist(ζ,Λ(A))

I Please see “Computation of pseudospectra” [Trefethen-1999] or
“Spectra and pseudospectra” [Trefethen/Embree-2005] for an
in-depth introduction (this talk’s title is an homage to the former)

4 / 34



A naïve algorithm

Algorithm 1: Naïve pseudospectrum calculation
foreach (x , y) in grid do

ρx ,y := min(svd(A− (x + yi)I))

O(N3) per grid-point. But very reliable and okay for small
matrices (used within pscont [Higham-1995])

Much better methods exist, even for arbitrary matrices. Most
techniques use some form of inverse-iteration Lanczos at each
grid-point.

5 / 34



Inverse iteration with the shifted Schur factor

Λε(A) = {ζ ∈ C : σmin(A− ζI) < ε}
= {ζ ∈ C : σmin(QH(A− ζI)Q) < ε}
= {ζ ∈ C : σmin(T − ζI) < ε}

I [Lui-97] proposed inverse-iteration Lanczos w/ shifted
Schur factor (and path following, which is debatable)

I Only O(N2) work per iteration, and ideally small number of
iterations per shift

I Most common general-purpose algorithm, e.g., used by
EigTool [Wright et al.-2001]

I Downsides: level 2 BLAS [Dongarra et al.-1988], and single
triangular solves parallelize poorly

I “Embarrassingly parallel” over set of shifts, but large
enough matrices must be distributed...

6 / 34



Inverse iteration with the shifted Schur factor

Algorithm 2: Schur decomp. + inverse iteration (grid algorithm)
T = schur(A)
foreach (α, β) in grid do

ρα,β := LanczosInverseIteration(T − (α + βi)I)

I [Lui-97] proposed inverse-iteration Lanczos w/ shifted
Schur factor (and path following, which is debatable)

I Only O(N2) work per iteration, and ideally small number of
iterations per shift

I Most common general-purpose algorithm, e.g., used by
EigTool [Wright et al.-2001]

I Downsides: level 2 BLAS [Dongarra et al.-1988], and single
triangular solves parallelize poorly

I “Embarrassingly parallel” over set of shifts, but large
enough matrices must be distributed...

7 / 34



Inverse iteration with the shifted Schur factor

Algorithm 2: Schur decomp. + inverse iteration (grid algorithm)
T = schur(A)
foreach (α, β) in grid do

ρα,β := LanczosInverseIteration(T − (α + βi)I)

I [Lui-97] proposed inverse-iteration Lanczos w/ shifted
Schur factor (and path following, which is debatable)

I Only O(N2) work per iteration, and ideally small number of
iterations per shift

I Most common general-purpose algorithm, e.g., used by
EigTool [Wright et al.-2001]

I Downsides: level 2 BLAS [Dongarra et al.-1988], and single
triangular solves parallelize poorly

I “Embarrassingly parallel” over set of shifts, but large
enough matrices must be distributed...

8 / 34



Inverse iteration with the shifted Schur factor

Algorithm 2: Schur decomp. + inverse iteration (grid algorithm)
T = schur(A)
foreach (α, β) in grid do

ρα,β := LanczosInverseIteration(T − (α + βi)I)

I [Lui-97] proposed inverse-iteration Lanczos w/ shifted
Schur factor (and path following, which is debatable)

I Only O(N2) work per iteration, and ideally small number of
iterations per shift

I Most common general-purpose algorithm, e.g., used by
EigTool [Wright et al.-2001]

I Downsides: level 2 BLAS [Dongarra et al.-1988], and single
triangular solves parallelize poorly

I “Embarrassingly parallel” over set of shifts, but large
enough matrices must be distributed...

9 / 34



Inverse iteration with the shifted Schur factor

Algorithm 2: Schur decomp. + inverse iteration (grid algorithm)
T = schur(A)
foreach (α, β) in grid do

ρα,β := LanczosInverseIteration(T − (α + βi)I)

I [Lui-97] proposed inverse-iteration Lanczos w/ shifted
Schur factor (and path following, which is debatable)

I Only O(N2) work per iteration, and ideally small number of
iterations per shift

I Most common general-purpose algorithm, e.g., used by
EigTool [Wright et al.-2001]

I Downsides: level 2 BLAS [Dongarra et al.-1988], and single
triangular solves parallelize poorly

I “Embarrassingly parallel” over set of shifts, but large
enough matrices must be distributed...

10 / 34



Inverse iteration with the shifted Schur factor

Algorithm 2: Schur decomp. + inverse iteration (grid algorithm)
T = schur(A)
foreach (α, β) in grid do

ρα,β := LanczosInverseIteration(T − (α + βi)I)

I [Lui-97] proposed inverse-iteration Lanczos w/ shifted
Schur factor (and path following, which is debatable)

I Only O(N2) work per iteration, and ideally small number of
iterations per shift

I Most common general-purpose algorithm, e.g., used by
EigTool [Wright et al.-2001]

I Downsides: level 2 BLAS [Dongarra et al.-1988], and single
triangular solves parallelize poorly

I “Embarrassingly parallel” over set of shifts, but large
enough matrices must be distributed...

11 / 34



A high-performance kernel

Each shift’s Lanczos procedure repeatedly applies (T − ζI)−1

and then (T − ζI)−H .

Key insight: Blocked “TRSM” algorithms can be modified to
allow for efficiently simultaneously solving with many different
shifts

{yj := T−1xj}j 7→ {yj := (T − ζj I)−1xj}j

Thesis: All high-performance general-purpose
implementations (sequential, shared-memory, distributed,
accelerated, etc.) should be built around this proposed kernel.

12 / 34



A high-performance kernel

Each shift’s Lanczos procedure repeatedly applies (T − ζI)−1

and then (T − ζI)−H .

Key insight: Blocked “TRSM” algorithms can be modified to
allow for efficiently simultaneously solving with many different
shifts

{yj := T−1xj}j 7→ {yj := (T − ζj I)−1xj}j

Thesis: All high-performance general-purpose
implementations (sequential, shared-memory, distributed,
accelerated, etc.) should be built around this proposed kernel.

13 / 34



A high-performance kernel

Each shift’s Lanczos procedure repeatedly applies (T − ζI)−1

and then (T − ζI)−H .

Key insight: Blocked “TRSM” algorithms can be modified to
allow for efficiently simultaneously solving with many different
shifts

{yj := T−1xj}j 7→ {yj := (T − ζj I)−1xj}j

Thesis: All high-performance general-purpose
implementations (sequential, shared-memory, distributed,
accelerated, etc.) should be built around this proposed kernel.

14 / 34



A high-performance kernel

Each shift’s Lanczos procedure repeatedly applies (T − ζI)−1

and then (T − ζI)−H .

Key insight: Blocked “TRSM” algorithms can be modified to
allow for efficiently simultaneously solving with many different
shifts

{yj := T−1xj}j 7→ {yj := (T − ζj I)−1xj}j

Thesis: All high-performance general-purpose
implementations (sequential, shared-memory, distributed,
accelerated, etc.) should be built around this proposed kernel.

15 / 34



Review of blocked algorithm for TRSM

Expose O(1)×O(1) bottom-right triangular submatrix of U:(
YT
YB

)
=

(
UTL UTR
0 UBR

)(
XT
XB

)
=

(
UTLXT + UTRXB

UBRXB

)

Algorithm 3: Upper TRSM

XB := U−1
BRYB

YT := YT − UTRXB
XT := Recurse(UTL,YT )
return X

Key point: Asymptotically, all of the work is within the UTRXB
multiplications.

16 / 34



Blocked algorithm for shifted TRSM

There is an obvious trivial modification for Y := (U − ζI)−1X :(
YT
YB

)
=

(
UTL − ζI UTR

0 UBR − ζI

)(
XT
XB

)
=

(
(UTL − ζI)XT + UTRXB

(UBR − ζI)XB

)

Algorithm 4: Shifted upper TRSM
XB := (UBR − ζI)−1YB
YT := YT − UTRXB
XT := Recurse(UTL, ζ,YT )
return X

Notice that ζ is only used within the small diagonal block
triangular solves.

17 / 34



Blocked algorithm for multi-shift TRSM

Algorithm 5: Multi-shift TRSM
XB := MultiShiftTrsm(UBR, {ζj}j ,YB)
YT := YT − UTRXB
XT := Recurse(UTL, {ζj}j ,YT )
return X

Again, vast majority of work lies in UTRXB matrix-matrix
multiplies.

In parallel: each process can redundantly perform the small
multi-shift TRSM and then participate in a parallel matrix-matrix
multiply for UTRXB.

18 / 34



Implementation in Elemental

I Recently implemented various distributed interleaved
inverse-iteration algorithms using Elemental [P. et al.-2013]:

I Power method (w/ optional deflation)
I Lanczos w/o reorthog. (w/ optional deflation)
I Lanczos w/ reorthog.+restarting (w/ optional deflation)

I Analyzed 20,000× 20,000 upper-triangular matrices using 2048
cores of TACC’s Stampede (500× 500 grid in 16 pieces)

I Execution time sometimes as low as two minutes. Already
achieving 25% of peak w/o tuning for modest-sized parallel
problems

I Preliminary implementation of Spectral Divide and Conquer [Bai
et al.-1997,Demmel et al.-2007] (still working out stability issues,
already works in some large-scale cases)

Available under New BSD License from libelemental.org

Active Elemental Collaborators: Bientinesi, Grant, Hammond,
Marker, Petschow, Schatz, and van de Geijn

19 / 34



Implementation in Elemental

I Recently implemented various distributed interleaved
inverse-iteration algorithms using Elemental [P. et al.-2013]:

I Power method (w/ optional deflation)
I Lanczos w/o reorthog. (w/ optional deflation)
I Lanczos w/ reorthog.+restarting (w/ optional deflation)

I Analyzed 20,000× 20,000 upper-triangular matrices using 2048
cores of TACC’s Stampede (500× 500 grid in 16 pieces)

I Execution time sometimes as low as two minutes. Already
achieving 25% of peak w/o tuning for modest-sized parallel
problems

I Preliminary implementation of Spectral Divide and Conquer [Bai
et al.-1997,Demmel et al.-2007] (still working out stability issues,
already works in some large-scale cases)

Available under New BSD License from libelemental.org

Active Elemental Collaborators: Bientinesi, Grant, Hammond,
Marker, Petschow, Schatz, and van de Geijn

20 / 34



Implementation in Elemental

I Recently implemented various distributed interleaved
inverse-iteration algorithms using Elemental [P. et al.-2013]:

I Power method (w/ optional deflation)
I Lanczos w/o reorthog. (w/ optional deflation)
I Lanczos w/ reorthog.+restarting (w/ optional deflation)

I Analyzed 20,000× 20,000 upper-triangular matrices using 2048
cores of TACC’s Stampede (500× 500 grid in 16 pieces)

I Execution time sometimes as low as two minutes. Already
achieving 25% of peak w/o tuning for modest-sized parallel
problems

I Preliminary implementation of Spectral Divide and Conquer [Bai
et al.-1997,Demmel et al.-2007] (still working out stability issues,
already works in some large-scale cases)

Available under New BSD License from libelemental.org

Active Elemental Collaborators: Bientinesi, Grant, Hammond,
Marker, Petschow, Schatz, and van de Geijn

21 / 34



Implementation in Elemental

I Recently implemented various distributed interleaved
inverse-iteration algorithms using Elemental [P. et al.-2013]:

I Power method (w/ optional deflation)
I Lanczos w/o reorthog. (w/ optional deflation)
I Lanczos w/ reorthog.+restarting (w/ optional deflation)

I Analyzed 20,000× 20,000 upper-triangular matrices using 2048
cores of TACC’s Stampede (500× 500 grid in 16 pieces)

I Execution time sometimes as low as two minutes. Already
achieving 25% of peak w/o tuning for modest-sized parallel
problems

I Preliminary implementation of Spectral Divide and Conquer [Bai
et al.-1997,Demmel et al.-2007] (still working out stability issues,
already works in some large-scale cases)

Available under New BSD License from libelemental.org

Active Elemental Collaborators: Bientinesi, Grant, Hammond,
Marker, Petschow, Schatz, and van de Geijn

22 / 34



Implementation in Elemental

I Recently implemented various distributed interleaved
inverse-iteration algorithms using Elemental [P. et al.-2013]:

I Power method (w/ optional deflation)
I Lanczos w/o reorthog. (w/ optional deflation)
I Lanczos w/ reorthog.+restarting (w/ optional deflation)

I Analyzed 20,000× 20,000 upper-triangular matrices using 2048
cores of TACC’s Stampede (500× 500 grid in 16 pieces)

I Execution time sometimes as low as two minutes. Already
achieving 25% of peak w/o tuning for modest-sized parallel
problems

I Preliminary implementation of Spectral Divide and Conquer [Bai
et al.-1997,Demmel et al.-2007] (still working out stability issues,
already works in some large-scale cases)

Available under New BSD License from libelemental.org

Active Elemental Collaborators: Bientinesi, Grant, Hammond,
Marker, Petschow, Schatz, and van de Geijn

23 / 34



Demmel matrix
Upper-triangular Toeplitz matrix with main diagonal equal to −1, and
with steady decrease to −104 in the top-right entry.

x

Window: [−3500,3500]× [−3500,3500]
24 / 34



Demmel matrix
Upper-triangular Toeplitz matrix with main diagonal equal to −1, and
with steady decrease to −104 in the top-right entry.

x

Window: [−500,500]× [−500,500]
25 / 34



Upper-triangular Fox-Li

(Au)(x) =
√

iF/π
∫ x

−1
eiF (x−y)2

u(y)dy

x

Window: [−0.35,0.35]× [−0.35,0.35]
26 / 34



Upper-triangular Fox-Li

(Au)(x) =
√

iF/π
∫ x

−1
eiF (x−y)2

u(y)dy

x

Window: [−0.05,0.05]× [−0.05,0.05]
27 / 34



Related work on parallel pseudospectra

A wide variety of existing literature:
I Parallel path following [Mezher-2001,Bekas et al.-2001]
I “Embarrassingly parallel” Lanczos: Fvpspack

[Braconnier-1996]
I Parallel sparse-direct shift-and-invert [Fraysse et al.-1996]

Differences from current work:
I New multi-shift TRSM drastically reduces data movement
I Other approaches not pushing for scalable Schur

decomposition (will build on [Granat et al.-2010,Bai et
al.-1997,Demmel et al.-2007])

I Goal is massively parallel blackbox equivalent to EigTool

28 / 34



Future work for computing pseudospectra

Overall algorithm:
I Modify EigTool to support high-performance kernel
I Multi-shift TRSM via BLAS-Like Interface Software (BLIS)

[van Zee et al.-2013]
I Accelerator support for multi-shift TRSM
I Intelligent choice of independent subteams after Schur
I Full-scale runs on preconditioned 2D operators

Spectral Divide and Conquer:
I Intelligent Mobius transformations [Ballard et al.-2011]
I Tuned matrix-sign function implementation (scaling,

Newton-Schulz, robust tolerance, accelerator support)
[Higham-2008]

I Means of falling back to AED [Bai et al.-1997]

Aggressive Early Deflation (for Hessenberg QR algorithm):
I Wrap ScaLAPACK [Choi et al.-1992] parallelization [Granat et

al.-2010] of AED [Braman et al.-2002])
29 / 34



Sparse-direct solvers and sweeping preconditioners

Collaborators: P. Tsuji and L. Ying
github.com/poulson/Clique and github.com/poulson/PSP

= ≈

I 2D distributions for sparse-direct TRSM

I Extension of selective inversion [Raghavan-1998] for supernodal
Bunch-Kaufman

I Originally built to support a sweeping preconditioner
[Engquist/Ying-2011]

30 / 34



Butterfly algorithm and directional FMM

Collaborators: A. Benson, L. Demanet, and L. Ying
github.com/poulson/dist-butterfly and
github.com/arbenson/ddfmm

(Kg)(x) =

∫
Y

K (x , y)g(y)dy

Future work:

I Near-optimal parallel algorithm for quasi-uniform butterfly

I “Cell-level” parallel sparse directional FMM

I Combine ideas in future: parallel sparse butterfly and more
scalable directional FMM

31 / 34



Low-rank + sparse MRI

Collaborators: E. Candès and R. Otazo
github.com/poulson/rt-lps-mri

Main ideas:

I Fourier-domain work independent for each (coil,time) pair

I Image-domain work involves Tall-Skinny matrices

I Carefully alternate between appropriate 1D distributions

I Reduced reconstruction time from hours to roughly one minute

32 / 34



Structured matrix factorization

Collaborators: A. Benson, K. Ho, Y. Li, and L. Ying
bitbucket.org/poulson/dmhm

I Working scalable parallel H-matrix composition/inversion

I H-matrix inversion more work than fact., but more scalable

I Heirarchical Interpolative Factorizations a promising alternative

33 / 34



Closing
Project websites (software + references):

I Elemental: libelemental.org
I Clique: github.com/poulson/Clique
I Parallel Sweeping Preconditioner: github.com/poulson/PSP
I DistButterfly: github.com/poulson/dist-butterfly
I DDFMM: github.com/arbenson/ddfmm
I Low-rank + sparse MRI: github.com/poulson/rt-lps-mri
I H-matrices: bitbucket.org/poulson/dmhm

Thanks:
National Science Foundation (SSI-SI2, ACI-1148125)
Texas Advanced Computing Center
XSEDE
Argonne National Laboratory:

I Jed Brown (MCS)
I Jeff Hammond (ALCF)

Questions?
34 / 34


